Sains Malaysiana 54(12)(2025): 2907-2916

http://doi.org/10.17576/jsm-2025-5412-09

 

Quantitative ELISA Analysis of Protein Expression in HepG2 Cells Following Treatment with Insulin, Glucose, and Bis(maltolato)oxovanadium(IV)

(Analisis Kuantitatif ELISA Pengekspresan Protein dalam Sel HepG2 Selepas Rawatan dengan Insulin, Glukosa dan Bis(maltolato)oksovanadium(IV))


ABEER SAMIH AL-QATATI*


Medical Laboratory Sciences Department, Faculty of Science, The University of Jordan,
Amman, Jordan

 

Received: 19 December 2024/Accepted: 8 September 2025

 

Abstract

Type 2 diabetes, the most common form of diabetes mellitus, is caused by insulin resistance. Many studies have sought orally active therapeutic compounds to replace insulin injections. This study examines the expression levels of key proteins involved in the insulin receptor (InsR) and AMP-activated protein kinase (AMPK) signaling pathways in HepG2 cells using ELISA, following treatment with insulin, glucose, and/or bis(maltolato)oxovanadium(IV) (BMOV). Treatment with BMOV for 24 h in the presence of glucose significantly increased the levels of glucose transporter type 4 (GLUT4) in the cell lysate from 511 ± 7 ng/L (control) to 882 ± 5 ng/L, and AMPK α1 in the supernatant from 683 ± 9 ng/L to 789 ± 6 ng/L. BMOV treatment for 1 h with glucose increased InsR levels in the lysate from 1.52 ± 0.11 ng/L to 4.01 ± 0.03 ng/L. Additionally, cell-based ELISA showed that AMPK β1 absorbance increased significantly under glucose + BMOV (1 h) treatment (1.32 ± 0.04) compared to the control (0.83 ± 0.03). These findings suggest that BMOV modulates glucose-related signaling pathways and may target the AMPK system - a major therapeutic axis for obesity, diabetes, and metabolic syndrome.

Keywords: AMP-activated protein kinase; BMOV; diabetes; ELISA; insulin receptor

 

Abstrak

Diabetes jenis 2 adalah bentuk diabetes mellitus yang paling biasa yang disebabkan oleh rintangan insulin. Banyak kajian telah mencari sebatian terapeutik aktif secara oral untuk menggantikan suntikan insulin. Penyelidikan ini mengkaji tahap pengekspresan protein utama yang terlibat dalam reseptor insulin (InsR) dan laluan isyarat protein kinase (AMPK) diaktifkan AMP dalam sel HepG2 menggunakan ELISA, selepas rawatan dengan insulin, glukosa dan/atau bis(maltolato)oksovanadium(IV) (BMOV). Rawatan dengan BMOV selama 24 jam dengan kehadiran glukosa dengan ketara meningkatkan tahap pengangkut glukosa jenis 4 (GLUT4) dalam sel lisat daripada 511 ± 7 ng/L (kawalan) kepada 882 ± 5 ng/L dan AMPK α1 dalam supernatan daripada 683 ± 9 ng/L kepada 789 ± 6 ng/L. Rawatan BMOV selama 1 jam dengan glukosa meningkatkan tahap InsR dalam lisat daripada 1.52 ± 0.11 ng/L kepada 4.01 ± 0.03 ng/L. Tambahan pula, ELISA berasaskan sel menunjukkan bahawa penyerapan AMPK β1 meningkat dengan ketara di bawah rawatan glukosa + BMOV (1 jam) (1.32 ± 0.04) berbanding kawalan (0.83 ± 0.03). Penemuan ini mencadangkan bahawa BMOV memodulasi laluan isyarat berkaitan glukosa dan mungkin menyasarkan sistem AMPK-paksi terapeutik utama untuk obesiti, diabetes dan sindrom metabolik.

Kata kunci: BMOV; diabetes; ELISA; kinase protein diaktifkan AMP; reseptor insulin

 

REFERENCES

Al-Qatati, A., Wolf-Ringwall, A.L., Bouma, G.J., Crans, D.C., Barisas, B.G. & Roess, D. 2013. Using real time RT-PCR analysis to determine gene expression patterns in RBL-2H3 cells in response to insulin, glucose, and the anti-diabetic bis(maltolato)oxovanadium (IV). Journal of Al Azhar University-Gaza (Natural Sciences) 15: 129-152.

Barceloux, D.G. 1999. Vanadium. Journal of Toxicology: Clinical Toxicology 37: 265-278.

Davies, S.P., Hawley, S.A., Woods, A., Carling, D., Haystead, T.A. & Hardie, D.G. 1994. Purification of the AMP-activated protein kinase on ATP-gamma-sepharose and analysis of its subunit structure. European Journal of Biochemistry 223: 351-357.

DeFronzo, R.A., Bonadonna, R.C. & Ferrannini, E. 1992. Pathogenesis of NIDDM: A balanced overview. Diabetes Care 15: 318-368.

Heyliger, C.E., Tahiliani, A.G. & McNeill, J.H. 1985. Effect of vanadate on elevated blood glucose and depressed cardiac performance of diabetic rats. Science 227: 1474-1477.

Hunter, R.W., Treebak, J.T., Wojtaszewski, J.F.P. & Sakamoto, K. 2011. Molecular mechanism by which AMP-activated protein kinase activation promotes glycogen accumulation in muscle. Diabetes 60: 766-774.

Kahn, C.R. & White, M.F. 1988. The insulin receptor and the molecular mechanism of insulin action. Journal of Clinical Investigation 82: 1151-1156.

Kubohara, Y., Homma, Y., Shibata, H., Oshima, Y. & Kikuchi, H. 2021. Dictyostelium differentiation-inducing factor-1 promotes glucose uptake, at least in part, via an AMPK-dependent pathway in mouse 3T3-L1 cells. International Journal of Molecular Sciences 22(5): 2293.

Lee, H.A., Cho, J.H., Afinanisa, Q., An, G.H., Han, J.G., Kang, H., Choi, S.H. & Seong, H.A. 2020. Ganoderma lucidum extract reduces insulin resistance by enhancing AMPK activation in high-fat diet-induced obese mice. Nutrients 12(11): 3338.

Li, J., Ding, X., Jian, T., , H., Zhao, L., Li, J., Liu, Y., Ren, B. & Chen, J. 2020. Four sesquiterpene glycosides from loquat (Eriobotrya japonica) leaf ameliorate palmitic acid-induced insulin resistance and lipid accumulation in HepG2 cells via AMPK signaling pathway. PeerJ. 8: e10413.

Lyonnet, B., Martz, M. & Martin, E. 1899. L’Emploi Thérapeutique des Dérivés du Vanadium. La Presse Médicale 32: 191-192.

Marsin, A.S., Bouzin, C., Bertrand, L. & Hue, L. 2002. The stimulation of glycolysis by hypoxia in activated monocytes is mediated by AMP-activated protein kinase and inducible 6-phosphofructo-2-kinase. Journal of Biological Chemistry 277: 30778-30783.

Mehdi, M.Z. & Srivastava, A.K. 2005. Organo-vanadium compounds are potent activators of the protein kinase B signaling pathway and protein tyrosine phosphorylation: Mechanism of insulinomimesis. Archives of Biochemistry and Biophysics 440: 158-164.

Meyerovitch, J., Farfel, Z., Sack, J. & Shechter, Y. 1987. Oral administration of vanadate normalizes blood glucose levels in streptozotocin-treated rats: Characterization and mode of action. Journal of Biological Chemistry 262: 6658-6662.

Mohammad, A., Sharma, V. & McNeill, J.H. 2002. Vanadium increases GLUT4 in diabetic rat skeletal muscle. Molecular and Cellular Biochemistry 233: 139-143.

Molero, J.C., Martinez, C., Andres, A., Satrustegui, J. & Carrascosa, J.M. 1998. Vanadate fully stimulates insulin receptor substrate-1 associated phosphatidylinositol 3-kinase activity in adipocytes from young and old rats. FEBS Letters 425: 298-304.

Nathan, D.M., Buse, J.B., Davidson, M.B., Ferrannini, E., Holman, R.R., Sherwin, R. & Zinman, B. 2009. Medical management of hyperglycemia in type 2 diabetes: A consensus algorithm for the initiation and adjustment of therapy. Diabetes Care 32: 193-203.

Shafrir, E., Spielman, S., Nachliel, I., Khamaisi, M., Bar-On, H. & Ziv, E. 2001. Treatment of diabetes with vanadium salts: General overview and amelioration of nutritionally induced diabetes in the Psammomys obesus gerbil. Diabetes/Metabolism Research and Reviews 17(1): 55-66.

Shamshoum, H., Vlavcheski, F., MacPherson, R.E.K. & Tsiani, E. 2021. Rosemary extract activates AMPK, inhibits mTOR, and attenuates the high glucose- and high insulin-induced muscle cell insulin resistance. Applied Physiology, Nutrition, and Metabolism 46(7): 819-827.

Stapleton, D., Mitchelhill, K.I., Gao, G., Widmer, J., Michell, B.J., Teh, T., House, C.M., Fernandez, C.S., Cox, T., Witters, L.A. & Kemp, B.E. 1996. Mammalian AMP-activated protein kinase subfamily. Journal of Biological Chemistry 271(2): 611-614.

Stein, S.C., Woods, A., Jones, N.A., Davison, M.D. & Carling, D. 2000. The regulation of AMP-activated protein kinase by phosphorylation. Biochemical Journal 345 Pt 3(Pt 3): 437-443.

Taylor, E.B., An, D., Kramer, H.F., Yu, H., Fujii, N.L., Roeckl, K.S., Bowles, N., Hirshman, M.F., Xie, J., Feener, E.P. & Goodyear, L.J.  2008. Discovery of TBC1D1 as an insulin-, AICAR-, and contraction-stimulated signaling nexus in mouse skeletal muscle. Journal of Biological Chemistry 283(15): 9787-9796.

Tolman, E.L., Barris, E., Burns, M., Pansini, A. & Partridge, R. 1979. Effects of vanadium on glucose metabolism in vitro. Life Sciences 25: 1159-1164.

Tsiani, E., Bogdanovic, E., Sorisky, A., Nagy, L. & Fantus, I.G. 1998. Tyrosine phosphatase inhibitors, vanadate, and pervanadate stimulate glucose transport and GLUT translocation in muscle cells by a mechanism independent of phosphatidylinositol 3-kinase and protein kinase C. Diabetes 47: 1676-1686.

Wang, J., Yuen, V.G. & McNeill, J.H. 2001. Effect of vanadium on insulin sensitivity and appetite. Metabolism 50: 667-673.

White, M.F., Shoelson, S.E., Keutmann, H. & Kahn, C.R. 1988. A cascade of tyrosine autophosphorylation in the β-subunit activates the phosphotransferase of the insulin receptor. Journal of Biological Chemistry 263(6): 2969-2980.

Winter, P., Al-Qatati, A., Wolf-Ringwall, A.L., Schoeberl, S., Chatterjee, B., Barisas, G., Roess, D. & Crans, D. 2012. The anti-diabetic bis(maltolato)oxovanadium(iv) decreases lipid order while increasing insulin receptor localization in membrane microdomains. Dalton Transactions 41: 6419-6430.

World Health Organization (WHO). 2006. Diabetes. Fact Sheet No. 312.

Yale, J.F., Lachance, D., Bevan, A.P., Vigeant, C., Shaver, A. & Posner, B.I. 1995. Hypoglycemic effects of peroxovanadium compounds in sprague-dawley and diabetic BB rats. Diabetes 44(11): 1274-1279.

Youngren, J. 2007. Regulation of insulin receptor function. Cellular and Molecular Life Sciences 64: 873-891.

Zhang, Y., Zhu, Z., Zhai, W., Bi, B.Y., Yin, Y. & Zhang, W. 2021. Expression and purification of asprosin in Pichia pastoris and investigation of its increase glucose uptake activity in skeletal muscle through activation of AMPK. Enzyme and Microbial Technology 144: 109737.

Zhou, Y.J., Xu, N., Zhang, X-C., Zhu, Y.Y., Liu, S-W. & Chang, Y-N. 2021. Chrysin improves glucose and lipid metabolism disorders by regulating the AMPK/PI3K/AKT signaling pathway in insulin-resistant HepG2 cells and HFD/STZ-induced C57BL/6J mice. Journal of Agricultural and Food Chemistry 69(20): 5618-5627.

Zorzano, A., Palacín, M., Marti, L. & García-Vicente, S. 2009. Arylalkylamine vanadium salts as new anti-diabetic compounds. Journal of Inorganic Biochemistry 103: 559-566.

 

*Corresponding author; email: a.alqatati@ju.edu.jo

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

previous next