Sains Malaysiana 54(12)(2025): 2907-2916
http://doi.org/10.17576/jsm-2025-5412-09
Quantitative
ELISA Analysis of Protein Expression in HepG2 Cells Following Treatment with
Insulin, Glucose, and Bis(maltolato)oxovanadium(IV)
(Analisis Kuantitatif ELISA Pengekspresan Protein dalam Sel HepG2 Selepas Rawatan dengan Insulin, Glukosa dan Bis(maltolato)oksovanadium(IV))
ABEER SAMIH AL-QATATI*
Medical
Laboratory Sciences Department, Faculty of Science, The University of Jordan,
Amman, Jordan
Received: 19 December 2024/Accepted: 8 September 2025
Abstract
Type
2 diabetes, the most common form of diabetes mellitus, is caused by insulin
resistance. Many studies have sought orally active therapeutic compounds to
replace insulin injections. This study examines the expression levels of key
proteins involved in the insulin receptor (InsR) and
AMP-activated protein kinase (AMPK) signaling pathways in HepG2 cells using
ELISA, following treatment with insulin, glucose, and/or bis(maltolato)oxovanadium(IV) (BMOV). Treatment
with BMOV for 24 h in the presence of glucose significantly increased the
levels of glucose transporter type 4 (GLUT4) in the cell lysate from 511 ± 7
ng/L (control) to 882 ± 5 ng/L, and AMPK α1 in the supernatant from 683 ±
9 ng/L to 789 ± 6 ng/L. BMOV treatment for 1 h with glucose increased InsR levels in the lysate from 1.52 ± 0.11 ng/L to 4.01 ±
0.03 ng/L. Additionally, cell-based ELISA showed that AMPK β1 absorbance
increased significantly under glucose + BMOV (1 h) treatment (1.32 ± 0.04)
compared to the control (0.83 ± 0.03). These findings suggest that BMOV
modulates glucose-related signaling pathways and may target the AMPK system - a
major therapeutic axis for obesity, diabetes, and metabolic syndrome.
Keywords: AMP-activated
protein kinase; BMOV; diabetes; ELISA; insulin receptor
Abstrak
Diabetes jenis 2 adalah bentuk diabetes
mellitus yang paling biasa yang disebabkan oleh rintangan insulin. Banyak kajian telah mencari sebatian terapeutik aktif secara oral untuk menggantikan suntikan insulin. Penyelidikan ini mengkaji tahap pengekspresan protein utama yang terlibat dalam reseptor insulin (InsR) dan laluan isyarat protein kinase
(AMPK) diaktifkan AMP dalam sel HepG2 menggunakan ELISA, selepas rawatan dengan insulin, glukosa dan/atau bis(maltolato)oksovanadium(IV)
(BMOV). Rawatan dengan BMOV selama 24 jam dengan kehadiran glukosa dengan ketara meningkatkan tahap pengangkut glukosa jenis 4 (GLUT4) dalam sel lisat daripada 511 ± 7 ng/L (kawalan) kepada 882 ± 5 ng/L dan AMPK α1 dalam supernatan daripada 683 ± 9 ng/L kepada 789 ±
6 ng/L. Rawatan BMOV selama 1 jam dengan glukosa meningkatkan tahap InsR dalam lisat daripada 1.52 ± 0.11 ng/L kepada 4.01 ± 0.03 ng/L. Tambahan pula, ELISA berasaskan sel menunjukkan bahawa penyerapan AMPK β1 meningkat dengan ketara di bawah rawatan glukosa + BMOV (1 jam) (1.32 ± 0.04) berbanding kawalan (0.83 ± 0.03). Penemuan ini mencadangkan bahawa BMOV memodulasi laluan isyarat berkaitan glukosa dan mungkin menyasarkan sistem AMPK-paksi terapeutik utama untuk obesiti, diabetes dan sindrom metabolik.
Kata kunci: BMOV; diabetes; ELISA; kinase protein diaktifkan AMP; reseptor insulin
REFERENCES
Al-Qatati,
A., Wolf-Ringwall, A.L., Bouma, G.J., Crans, D.C., Barisas, B.G. &
Roess, D. 2013. Using real time RT-PCR analysis to determine gene expression
patterns in RBL-2H3 cells in response to insulin, glucose, and the
anti-diabetic bis(maltolato)oxovanadium (IV). Journal
of Al Azhar University-Gaza (Natural Sciences) 15: 129-152.
Barceloux, D.G. 1999. Vanadium. Journal
of Toxicology: Clinical Toxicology 37: 265-278.
Davies, S.P., Hawley, S.A.,
Woods, A., Carling, D., Haystead, T.A. & Hardie, D.G. 1994. Purification of
the AMP-activated protein kinase on ATP-gamma-sepharose and analysis of its subunit structure. European Journal of Biochemistry 223: 351-357.
DeFronzo, R.A.,
Bonadonna, R.C. & Ferrannini, E. 1992.
Pathogenesis of NIDDM: A balanced overview. Diabetes Care 15: 318-368.
Heyliger, C.E.,
Tahiliani, A.G. & McNeill, J.H. 1985. Effect of vanadate on elevated blood
glucose and depressed cardiac performance of diabetic rats. Science 227:
1474-1477.
Hunter, R.W., Treebak, J.T., Wojtaszewski, J.F.P.
& Sakamoto, K. 2011. Molecular mechanism by which AMP-activated protein
kinase activation promotes glycogen accumulation in muscle. Diabetes 60:
766-774.
Kahn, C.R. & White, M.F.
1988. The insulin receptor and the molecular mechanism of insulin action. Journal
of Clinical Investigation 82: 1151-1156.
Kubohara, Y., Homma, Y., Shibata,
H., Oshima, Y. & Kikuchi, H. 2021. Dictyostelium differentiation-inducing
factor-1 promotes glucose uptake, at least in part, via an AMPK-dependent
pathway in mouse 3T3-L1 cells. International Journal of Molecular Sciences 22(5): 2293.
Lee, H.A., Cho, J.H., Afinanisa, Q., An, G.H., Han, J.G., Kang, H., Choi, S.H. &
Seong, H.A. 2020. Ganoderma lucidum extract reduces insulin resistance
by enhancing AMPK activation in high-fat diet-induced obese mice. Nutrients 12(11): 3338.
Li, J., Ding, X., Jian, T., Lü, H., Zhao, L., Li, J., Liu, Y., Ren, B. & Chen,
J. 2020. Four sesquiterpene glycosides from loquat (Eriobotrya japonica)
leaf ameliorate palmitic acid-induced insulin resistance and lipid accumulation
in HepG2 cells via AMPK signaling pathway. PeerJ. 8: e10413.
Lyonnet, B., Martz, M. &
Martin, E. 1899. L’Emploi Thérapeutique des Dérivés du Vanadium. La Presse Médicale 32: 191-192.
Marsin, A.S., Bouzin, C., Bertrand, L. & Hue, L. 2002. The stimulation
of glycolysis by hypoxia in activated monocytes is mediated by AMP-activated
protein kinase and inducible 6-phosphofructo-2-kinase. Journal of Biological
Chemistry 277: 30778-30783.
Mehdi, M.Z. &
Srivastava, A.K. 2005. Organo-vanadium compounds are potent activators of the
protein kinase B signaling pathway and protein tyrosine phosphorylation:
Mechanism of insulinomimesis. Archives of
Biochemistry and Biophysics 440: 158-164.
Meyerovitch, J., Farfel, Z., Sack, J.
& Shechter, Y. 1987. Oral administration of vanadate normalizes blood
glucose levels in streptozotocin-treated rats: Characterization and mode of action. Journal of Biological Chemistry 262: 6658-6662.
Mohammad, A., Sharma, V.
& McNeill, J.H. 2002. Vanadium increases GLUT4 in diabetic rat skeletal muscle. Molecular and Cellular Biochemistry 233: 139-143.
Molero, J.C., Martinez, C.,
Andres, A., Satrustegui, J. & Carrascosa, J.M.
1998. Vanadate fully stimulates insulin receptor substrate-1 associated
phosphatidylinositol 3-kinase activity in adipocytes from young and old rats. FEBS
Letters 425: 298-304.
Nathan, D.M., Buse, J.B.,
Davidson, M.B., Ferrannini, E., Holman, R.R., Sherwin,
R. & Zinman, B. 2009. Medical management of hyperglycemia in type 2 diabetes:
A consensus algorithm for the initiation and adjustment of therapy. Diabetes
Care 32: 193-203.
Shafrir, E., Spielman, S., Nachliel, I., Khamaisi, M., Bar-On,
H. & Ziv, E. 2001. Treatment of diabetes with vanadium salts: General overview
and amelioration of nutritionally induced diabetes in the Psammomys obesus gerbil. Diabetes/Metabolism Research
and Reviews 17(1): 55-66.
Shamshoum, H., Vlavcheski, F., MacPherson, R.E.K. & Tsiani, E. 2021. Rosemary extract activates AMPK, inhibits
mTOR, and attenuates the high glucose- and high insulin-induced muscle cell
insulin resistance. Applied Physiology, Nutrition, and Metabolism 46(7):
819-827.
Stapleton, D., Mitchelhill, K.I., Gao, G., Widmer, J., Michell, B.J., Teh, T., House, C.M., Fernandez, C.S., Cox, T., Witters, L.A. & Kemp, B.E. 1996. Mammalian AMP-activated protein kinase subfamily. Journal of
Biological Chemistry 271(2): 611-614.
Stein, S.C., Woods, A., Jones,
N.A., Davison, M.D. & Carling, D. 2000. The regulation of AMP-activated
protein kinase by phosphorylation. Biochemical Journal 345 Pt 3(Pt 3):
437-443.
Taylor, E.B., An, D., Kramer,
H.F., Yu, H., Fujii, N.L., Roeckl,
K.S., Bowles, N., Hirshman, M.F., Xie, J.,
Feener, E.P. & Goodyear, L.J. 2008. Discovery of TBC1D1 as an insulin-,
AICAR-, and contraction-stimulated signaling nexus in mouse skeletal muscle. Journal
of Biological Chemistry 283(15): 9787-9796.
Tolman, E.L., Barris, E.,
Burns, M., Pansini, A. & Partridge, R. 1979. Effects of vanadium on glucose
metabolism in vitro. Life Sciences 25: 1159-1164.
Tsiani, E., Bogdanovic, E., Sorisky, A., Nagy, L. & Fantus, I.G. 1998. Tyrosine phosphatase
inhibitors, vanadate, and pervanadate stimulate glucose transport and GLUT translocation
in muscle cells by a mechanism independent of phosphatidylinositol 3-kinase and
protein kinase C. Diabetes 47: 1676-1686.
Wang, J., Yuen, V.G. &
McNeill, J.H. 2001. Effect of vanadium on insulin sensitivity and appetite. Metabolism 50: 667-673.
White, M.F., Shoelson, S.E., Keutmann, H. &
Kahn, C.R. 1988. A cascade of tyrosine autophosphorylation in the β-subunit
activates the phosphotransferase of the insulin receptor. Journal of
Biological Chemistry 263(6): 2969-2980.
Winter, P., Al-Qatati, A., Wolf-Ringwall, A.L., Schoeberl, S., Chatterjee, B., Barisas,
G., Roess, D. & Crans, D. 2012. The anti-diabetic
bis(maltolato)oxovanadium(iv) decreases lipid order
while increasing insulin receptor localization in membrane microdomains. Dalton
Transactions 41: 6419-6430.
World Health
Organization (WHO). 2006. Diabetes. Fact Sheet No. 312.
Yale, J.F., Lachance, D.,
Bevan, A.P., Vigeant, C., Shaver, A. & Posner, B.I. 1995. Hypoglycemic effects
of peroxovanadium compounds in sprague-dawley and diabetic BB rats. Diabetes 44(11): 1274-1279.
Youngren, J. 2007.
Regulation of insulin receptor function. Cellular and Molecular Life
Sciences 64: 873-891.
Zhang, Y., Zhu, Z., Zhai,
W., Bi, B.Y., Yin, Y. & Zhang, W. 2021. Expression and purification of asprosin in Pichia pastoris and investigation of its
increase glucose uptake activity in skeletal muscle through activation of AMPK. Enzyme and Microbial Technology 144: 109737.
Zhou, Y.J., Xu, N.,
Zhang, X-C., Zhu, Y.Y., Liu, S-W. & Chang, Y-N. 2021. Chrysin improves glucose
and lipid metabolism disorders by regulating the AMPK/PI3K/AKT signaling
pathway in insulin-resistant HepG2 cells and HFD/STZ-induced C57BL/6J mice. Journal
of Agricultural and Food Chemistry 69(20): 5618-5627.
Zorzano, A., Palacín, M., Marti, L. & García-Vicente, S. 2009. Arylalkylamine vanadium salts as new anti-diabetic
compounds. Journal of Inorganic Biochemistry 103: 559-566.
*Corresponding author; email: a.alqatati@ju.edu.jo